Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.244
Filtrar
1.
Methods Mol Biol ; 2794: 121-140, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38630225

RESUMO

Induced pluripotent stem cells (iPSCs) are in vitro-derived cells capable of giving rise to several different cell types. The generation of iPSCs holds great promise for regenerative medicine and drug discovery research because it allows mature cells to be reprogrammed into a state of pluripotency. These highly versatile cells can then be induced to produce a variety of cell lineages and tissues by activating specific regulatory genes that drive their differentiation along distinct lineages. The great potential of these cells was recognized by Shinya Yamanaka who was awarded the 2012 Nobel Prize for the discovery of iPSCs. Following their discovery, various methods have now been developed for generating iPSCs. Here, we describe a method for deriving iPSCs from human dental pulp using Sendai virus vectors.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Vírus Sendai/genética , Diferenciação Celular/genética , Linhagem da Célula , Descoberta de Drogas
2.
Stem Cell Res ; 76: 103358, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38447455

RESUMO

Parkinson's disease is a degenerative brain disorder characterized by dopamine neuronal degeneration and dopamine transporter loss. In this study, we generated an induced pluripotent stem cell (iPSC) line, KNIHi001-A, from the peripheral blood mononuclear cells (PBMCs) of a 76-year-old man with Parkinson's disease. The non-integrating Sendai virus was used to reprogram iPSCs. iPSCs exhibit pluripotent markers, a normal karyotype, viral clearance, and the ability to differentiate into the three germ layers.


Assuntos
Células-Tronco Pluripotentes Induzidas , Doença de Parkinson , Masculino , Humanos , Idoso , Células-Tronco Pluripotentes Induzidas/metabolismo , Doença de Parkinson/metabolismo , Leucócitos Mononucleares/metabolismo , Camadas Germinativas/metabolismo , Vírus Sendai/genética , Reprogramação Celular , Diferenciação Celular/fisiologia
3.
Stem Cell Res ; 76: 103332, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38354648

RESUMO

We established two iPSC lines starting from skin fibroblasts of two healthy individuals using Sendai-virus-based technique. The obtained iPSCs were characterized showing same STR profile as starting fibroblasts, normal karyotype, loss of stemness vectors, expression of stemness markers, both through real-time PCR and immunofluorescence, (OCT4, SOX2, TRA-1-60, NANOG and SSEA4) and in vitro differentiation into three germ layers.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Vírus Sendai/genética , Fibroblastos/metabolismo , Diferenciação Celular
4.
Stem Cell Res ; 76: 103355, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38412659

RESUMO

In this study, we have established human induced pluripotent stem cell (hiPSC) line, NIMHi010-A of a 42-year-old healthy donor. The iPSC line was generated from human dermal fibroblasts using Sendai viruses carrying reprogramming factors c-MYC, SOX2, KLF4, and OCT4 under a feeder-free culture system. The generated hiPSC line expressed typical pluripotency markers, displayed a normal karyotype, and demonstrated the potential to differentiate into the three germ layers. This hiPSC line will serve as a healthy control model for physiological processes and drug screening of Asian origin from Indian population.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Adulto , Células-Tronco Pluripotentes Induzidas/metabolismo , Fator 4 Semelhante a Kruppel , Fibroblastos/metabolismo , Pele , Vírus Sendai , Diferenciação Celular/fisiologia , Reprogramação Celular
5.
Stem Cell Res ; 75: 103318, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38295749

RESUMO

We generated PUMCi005-A, an induced pluripotent stem cell (iPSC) line, from dermal fibroblasts of a 32-year-old female Perrault syndrome patient with double heterozygous (794 G > A and 1181 G > A) mutations in the TWNK gene using Sendai viral delivery of OCT4, SOX2, KLF4, and c-MYC. The PUMCi005-A iPSC line carried the TWNK mutations, displayed typical iPSC morphology, expressed pluripotent stem cell markers, did not have integration of Sendai virus, and exhibited a normal karyotype and differentiation into three germ layers.


Assuntos
Disgenesia Gonadal 46 XX , Perda Auditiva Neurossensorial , Células-Tronco Pluripotentes Induzidas , Feminino , Humanos , Adulto , Células-Tronco Pluripotentes Induzidas/metabolismo , Fator 4 Semelhante a Kruppel , Perda Auditiva Neurossensorial/metabolismo , Disgenesia Gonadal 46 XX/metabolismo , Diferenciação Celular/genética , Vírus Sendai/genética , Mutação/genética , Fibroblastos/metabolismo
6.
Emerg Microbes Infect ; 13(1): 2300463, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38164736

RESUMO

One-quarter of the world's population is infected with Mycobacterium tuberculosis (Mtb). After initial exposure, more immune-competent persons develop asymptomatic latent tuberculosis infection (LTBI) but not active diseases, creates an extensive reservoir at risk of developing active tuberculosis. Previously, we constructed a novel recombinant Sendai virus (SeV)-vectored vaccine encoding two dominant antigens of Mtb, which elicited immune protection against acute Mtb infection. In this study, nine Mtb latency-associated antigens were screened as potential supplementary vaccine candidate antigens, and three antigens (Rv2029c, Rv2028c, and Rv3126c) were selected based on their immune-therapeutic effect in mice, and their elevated immune responses in LTBI human populations. Then, a recombinant SeV-vectored vaccine, termed SeV986A, that expresses three latency-associated antigens and Ag85A was constructed. In murine models, the doses, titers, and inoculation sites of SeV986A were optimized, and its immunogenicity in BCG-primed and BCG-naive mice were determined. Enhanced immune protection against the Mtb challenge was shown in both acute-infection and latent-infection murine models. The expression levels of several T-cell exhaustion markers were significantly lower in the SeV986A-vaccinated group, suggesting that the expression of latency-associated antigens inhibited the T-cell exhaustion process in LTBI infection. Hence, the multistage quarter-antigenic SeV986A vaccine holds considerable promise as a novel post-exposure prophylaxis vaccine against tuberculosis.


Assuntos
Tuberculose Latente , Mycobacterium tuberculosis , Tuberculose , Humanos , Animais , Camundongos , Tuberculose Latente/prevenção & controle , Vírus Sendai/genética , Vacina BCG , Antígenos de Bactérias/genética , Tuberculose/microbiologia , Mycobacterium tuberculosis/genética , Vacinas Sintéticas/genética
7.
Jpn J Infect Dis ; 77(1): 1-6, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38030267

RESUMO

Many viruses require the cleavage-activation of membrane fusion proteins by host proteases in the course of infection. This knowledge is based on historical studies of Sendai virus in the 1970s. From the 1970s to the 1990s, avian influenza virus and Newcastle disease virus were studied, showing a clear link between virulence and the cleavage-activation of viral membrane fusion proteins (hemagglutinin and fusion proteins) by host proteases. In these viruses, cleavage of viral membrane fusion proteins by furin is the basis for their high virulence. Subsequently, from the 2000s to the 2010s, the importance of TMPRSS2 in activating the membrane fusion proteins of various respiratory viruses, including seasonal influenza viruses, was demonstrated. In late 2019, severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) emerged and caused a pandemic. The virus continues to mutate, producing variants that have caused global pandemics. The spike protein of SARS-CoV-2 is characterized by two cleavage sites, each of which is cleaved by furin and TMPRSS2 to achieve membrane fusion. SARS-CoV-2 variants exhibit altered sensitivity to these proteases. Thus, studying the cleavage-activation of membrane fusion proteins by host proteases is critical for understanding the ongoing pandemic and developing countermeasures against it.


Assuntos
COVID-19 , Furina , Animais , Humanos , Furina/metabolismo , SARS-CoV-2/genética , Vírus Sendai/genética , Vírus Sendai/metabolismo , Peptídeo Hidrolases/metabolismo , Proteínas de Fusão de Membrana , Internalização do Vírus
8.
Stem Cell Reports ; 19(1): 141-157, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38134923

RESUMO

Although it is in its early stages, canine induced pluripotent stem cells (ciPSCs) hold great potential for innovative translational research in regenerative medicine, developmental biology, drug screening, and disease modeling. However, almost all ciPSCs were generated from fibroblasts, and available canine cell sources for reprogramming are still limited. Furthermore, no report is available to generate ciPSCs under feeder-free conditions because of their low reprogramming efficiency. Here, we reanalyzed canine pluripotency-associated genes and designed canine LIN28A, NANOG, OCT3/4, SOX2, KLF4, and C-MYC encoding Sendai virus vector, called 159cf. and 162cf. We demonstrated that not only canine fibroblasts but also canine urine-derived cells, which can be isolated using a noninvasive and straightforward method, were successfully reprogrammed with or without feeder cells. ciPSCs existed in undifferentiated states, differentiating into the three germ layers in vitro and in vivo. We successfully generated ciPSCs under feeder-free conditions, which can promote studies in veterinary and consequently human regenerative medicines.


Assuntos
Células-Tronco Pluripotentes Induzidas , Animais , Cães , Humanos , Reprogramação Celular/genética , Vírus Sendai/genética , Fator 4 Semelhante a Kruppel , Células Alimentadoras , Fibroblastos , Diferenciação Celular/genética
9.
Stem Cell Res ; 74: 103280, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38134577

RESUMO

We have successfully derived a novel human induced pluripotent stem cell (hiPSC) line using non-integrative Sendai virus. This hiPSC line was generated from a healthy male adult donor, aged 55, and subjected to thorough characterization and extensive quality control. The analysis confirmed the expression of undifferentiated stem cell markers, demonstrated the ability to differentiate into the three germ layers, and revealed the absence of any chromosomal abnormalities.


Assuntos
Células-Tronco Pluripotentes Induzidas , Adulto , Humanos , Masculino , Células-Tronco Pluripotentes Induzidas/metabolismo , Linhagem Celular , Leucócitos Mononucleares/metabolismo , Aberrações Cromossômicas , Vírus Sendai/genética , Diferenciação Celular , Reprogramação Celular
10.
Acta Biochim Biophys Sin (Shanghai) ; 55(10): 1582-1591, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37580950

RESUMO

Retinoic acid-inducible gene I (RIG-I) is a cytosolic viral RNA receptor. Upon viral infection, the protein recognizes and then recruits adapter protein mitochondrial antiviral signaling (MAVS) protein, initiating the production of interferons and proinflammatory cytokines to establish an antiviral state. In the present study, we identify zinc finger protein 205 (ZNF205) which associates with RIG-I and promotes the Sendai virus (SeV)-induced antiviral innate immune response. Overexpression of ZNF205 facilitates interferon-beta (IFN-ß) introduction, whereas ZNF205 deficiency restricts its introduction. Mechanistically, the C-terminal zinc finger domain of ZNF205 interacts with the N-terminal tandem caspase recruitment domains (CARDs) of RIG-I; this interaction markedly promotes K63 ubiquitin-linked polyubiquitination of RIG-I, which is crucial for RIG-I activation. Thus, our results demonstrate that ZNF205 is a positive regulator of the RIG-I-mediated innate antiviral immune signaling pathway.


Assuntos
Imunidade Inata , Transdução de Sinais , Proteína DEAD-box 58/genética , Proteína DEAD-box 58/metabolismo , Imunidade Inata/genética , Interferon beta/genética , Interferons/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Vírus Sendai/imunologia
11.
Vopr Virusol ; 68(3): 215-227, 2023 07 06.
Artigo em Russo | MEDLINE | ID: mdl-37436413

RESUMO

INTRODUCTION: Intranasal vaccination using live vector vaccines based on non-pathogenic or slightly pathogenic viruses is the one of the most convenient, safe and effective ways to prevent respiratory infections, including COVID-19. Sendai virus is the best suited for this purpose, since it is respiratory virus and is capable of limited replication in human bronchial epithelial cells without causing disease. The aim of the work is to design and study the vaccine properties of recombinant Sendai virus, Moscow strain, expressing secreted receptor-binding domain of SARS-CoV-2 Delta strain S protein (RBDdelta) during a single intranasal immunization. MATERIALS AND METHODS: Recombinant Sendai virus carrying insertion of RBDdelta transgene between P and M genes was constructed using reverse genetics and synthetic biology methods. Expression of RBDdelta was analyzed by Western blot. Vaccine properties were studied in two models: Syrian hamsters and BALB/c mice. Immunogenicity was evaluated by ELISA and virus-neutralization assays. Protectiveness was assessed by quantitation of SARS-CoV-2 RNA in RT-PCR and histological analysis of the lungs. RESULTS: Based on Sendai virus Moscow strain, a recombinant Sen-RBDdelta(M) was constructed that expressed a secreted RBDdelta immunologically identical to natural SARS-CoV-2 protein. A single intranasal administration of Sen-RBDdelta(M) to hamsters and mice significantly, by 15 and 107 times, respectively, reduced replicative activity of SARS-CoV-2 in lungs of animals, preventing the development of pneumonia. An effective induction of virus-neutralizing antibodies has also been demonstrated in mice. CONCLUSION: Sen-RBDdelta(M) is a promising vaccine construct against SARS-CoV-2 infection and has a protective properties even after a single intranasal introduction.


Assuntos
COVID-19 , Vacinas Virais , Cricetinae , Humanos , Camundongos , Animais , Respirovirus/genética , Vírus Sendai/genética , Vacinas contra COVID-19 , COVID-19/prevenção & controle , Paramyxoviridae/genética , Vacinas Virais/genética , Anticorpos Antivirais , Administração Intranasal , Moscou , RNA Viral , SARS-CoV-2/genética , Anticorpos Neutralizantes
12.
Stem Cell Res ; 70: 103133, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37307755

RESUMO

Urine cells obtained from a 14-year-old man with genetically proven (ACVR1: c.6176G > A) and clinically manifested fibrodysplasia ossificans progressiva were successfully transformed into induced pluripotent stem cells by using Sendai virus-based reprogramming vectors including the four Yamanaka factors such as OCT3/4, SOX2, KLF4, and c-MYC. These iPSCs expressed pluripotency markers, exhibited the potential to differentiate into three germ layers in spontaneous differentiation assay and had a normal karyotype. The iPSC line may provide a model for development of a personalized treatment including genome editing and drug screening, may be used for disease modelling, cell differentiation and pharmacological investigations. .


Assuntos
Células-Tronco Pluripotentes Induzidas , Miosite Ossificante , Masculino , Humanos , Adolescente , Células-Tronco Pluripotentes Induzidas/metabolismo , Miosite Ossificante/metabolismo , Fator 4 Semelhante a Kruppel , Diferenciação Celular/genética , Vírus Sendai/genética , Reprogramação Celular
13.
J Virol ; 97(4): e0024523, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37017521

RESUMO

Viruses constantly evolve and adapt to the antiviral defenses of their hosts. The biology of viral circumvention of these selective pressures can often be attributed to the acquisition of novel antagonistic gene products or by rapid genome change that prevents host recognition. To study viral evasion of RNA interference (RNAi)-based defenses, we established a robust antiviral system in mammalian cells using recombinant Sendai virus designed to be targeted by endogenous host microRNAs (miRNAs) with perfect complementarity. Using this system, we previously demonstrated the intrinsic ability of positive-strand RNA viruses to escape this selective pressure via homologous recombination, which was not observed in negative-strand RNA viruses. Here, we show that given extensive time, escape of miRNA-targeted Sendai virus was enabled by host adenosine deaminase acting on RNA 1 (ADAR1). Independent of the viral transcript targeted, ADAR1 editing resulted in disruption of the miRNA-silencing motif, suggesting an intolerance for extensive RNA-RNA interactions necessary for antiviral RNAi. This was further supported in Nicotiana benthamiana, where exogenous expression of ADAR1 interfered with endogenous RNAi. Together, these results suggest that ADAR1 diminishes the effectiveness of RNAi and may explain why it is absent in species that utilize this antiviral defense system. IMPORTANCE All life at the cellular level has the capacity to induce an antiviral response. Here, we examine the result of imposing the antiviral response of one branch of life onto another and find evidence for conflict. To determine the consequences of eliciting an RNAi-like defense in mammals, we applied this pressure to a recombinant Sendai virus in cell culture. We find that ADAR1, a host gene involved in regulation of the mammalian response to virus, prevented RNAi-mediated silencing and subsequently allowed for viral replication. In addition, the expression of ADAR1 in Nicotiana benthamiana, which lacks ADARs and has an endogenous RNAi system, suppresses gene silencing. These data indicate that ADAR1 is disruptive to RNAi biology and provide insight into the evolutionary relationship between ADARs and antiviral defenses in eukaryotic life.


Assuntos
Adenosina Desaminase , Interações entre Hospedeiro e Microrganismos , MicroRNAs , Interferência de RNA , Infecções por Respirovirus , Animais , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Antivirais/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Replicação Viral/genética , Vírus Sendai/classificação , Inativação Gênica , Humanos , Mutação , Fases de Leitura Aberta , Evolução Biológica , Interações entre Hospedeiro e Microrganismos/genética , Infecções por Respirovirus/metabolismo , Infecções por Respirovirus/virologia
14.
Cell Transplant ; 32: 9636897221107009, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37088987

RESUMO

One of the challenges in clinical translation of cell-replacement therapies is the definition of optimal cell generation and storage/recovery protocols which would permit a rapid preparation of cell-treatment products for patient administration. Besides, the availability of injection devices that are simple to use is critical for potential future dissemination of any spinally targeted cell-replacement therapy into general medical practice. Here, we compared the engraftment properties of established human-induced pluripotent stem cells (hiPSCs)-derived neural precursor cell (NPCs) line once cells were harvested fresh from the cell culture or previously frozen and then grafted into striata or spinal cord of the immunodeficient rat. A newly developed human spinal injection device equipped with a spinal cord pulsation-cancelation magnetic needle was also tested for its safety in an adult immunosuppressed pig. Previously frozen NPCs showed similar post-grafting survival and differentiation profile as was seen for freshly harvested cells. Testing of human injection device showed acceptable safety with no detectable surgical procedure or spinal NPCs injection-related side effects.


Assuntos
Reprogramação Celular , Células-Tronco Pluripotentes Induzidas , Injeções Espinhais , Células-Tronco Neurais , Transplante de Células-Tronco , Adulto , Animais , Humanos , Ratos , Diferenciação Celular/fisiologia , Reprogramação Celular/genética , Reprogramação Celular/fisiologia , Vetores Genéticos/genética , Sobrevivência de Enxerto/fisiologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Células-Tronco Pluripotentes Induzidas/transplante , Injeções Espinhais/efeitos adversos , Injeções Espinhais/instrumentação , Injeções Espinhais/métodos , Células-Tronco Neurais/fisiologia , Células-Tronco Neurais/transplante , Vírus Sendai , Manejo de Espécimes/métodos , Transplante de Células-Tronco/efeitos adversos , Transplante de Células-Tronco/instrumentação , Transplante de Células-Tronco/métodos , Suínos , Coleta de Tecidos e Órgãos/métodos , Resultado do Tratamento , Encéfalo , Medula Espinal
16.
Cell Transplant ; 32: 9636897231163232, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36959733

RESUMO

The critical requirements in developing clinical-grade human-induced pluripotent stem cells-derived neural precursors (hiPSCs-NPCs) are defined by expandability, genetic stability, predictable in vivo post-grafting differentiation, and acceptable safety profile. Here, we report on the use of manual-selection protocol for generating expandable and stable human NPCs from induced pluripotent stem cells. The hiPSCs were generated by the reprogramming of peripheral blood mononuclear cells with Sendai-virus (SeV) vector encoding Yamanaka factors. After induction of neural rosettes, morphologically defined NPC colonies were manually harvested, re-plated, and expanded for up to 20 passages. Established NPCs showed normal karyotype, expression of typical NPCs markers at the proliferative stage, and ability to generate functional, calcium oscillating GABAergic or glutamatergic neurons after in vitro differentiation. Grafted NPCs into the striatum or spinal cord of immunodeficient rats showed progressive maturation and expression of early and late human-specific neuronal and glial markers at 2 or 6 months post-grafting. No tumor formation was seen in NPCs-grafted brain or spinal cord samples. These data demonstrate the effective use of in vitro manual-selection protocol to generate safe and expandable NPCs from hiPSCs cells. This protocol has the potential to be used to generate GMP (Good Manufacturing Practice)-grade NPCs from hiPSCs for future clinical use.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Neurais , Humanos , Ratos , Animais , Vírus Sendai/genética , Leucócitos Mononucleares , Neurônios/metabolismo , Diferenciação Celular
17.
Stem Cell Res ; 67: 103041, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36764067

RESUMO

A pair of Down syndrome (DS) human iPSCs (hiPSCs) and isogenic euploid hiPSCs generated by using an integration-free Sendai viral vector system showed trisomy 21 (47; XY) and typical (46; XY) karyotype respectively. Pluripotency of both hiPSC lines was confirmed by pluripotency marker expression and three germ layer differentiation potentials.


Assuntos
Síndrome de Down , Células-Tronco Pluripotentes Induzidas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Síndrome de Down/metabolismo , Diferenciação Celular , Cariótipo , Vírus Sendai
18.
Genes Cells ; 28(1): 29-41, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36401755

RESUMO

The coronavirus disease 2019 (COVID-19) epidemic remains worldwide. The usefulness of the intranasal vaccine and boost immunization against severe acute respiratory syndrome-related coronavirus (SARS-CoV-2) has recently received much attention. We developed an intranasal SARS-CoV-2 vaccine by loading the receptor binding domain of the S protein (S-RBD) of SARS-CoV-2 as an antigen into an F-deficient Sendai virus vector. After the S-RBD-Fd antigen with trimer formation ability was intranasally administered to mice, S-RBD-specific IgM, IgG, IgA, and neutralizing antibody titers were increased in serum or bronchoalveolar lavage fluid for 12 weeks. Furthermore, in mice that received a booster dose at week 8, a marked increase in neutralizing antibodies in the serum and bronchoalveolar lavage fluid was observed at the final evaluation at week 12, which neutralized the pseudotyped lentivirus expressing the SARS-CoV-2 spike protein, indicating the usefulness of the Sendai virus-based SARS-CoV-2 intranasal vaccine.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Animais , Anticorpos Antivirais , COVID-19/prevenção & controle , Modelos Animais de Doenças , SARS-CoV-2 , Vírus Sendai/genética , Camundongos
19.
Cell Rep Methods ; 2(11): 100349, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36452874

RESUMO

Technologies to reprogram somatic cells into iPSCs have advanced significantly, however challenges to the derivation of iPSCs remain. In this issue of Cell Reports Methods, Kunitomi et al. address some of these challenges by developing a straightforward protocol to derive naive human iPSCs using Sendai virus vectors.


Assuntos
Reprogramação Celular , Células-Tronco Pluripotentes Induzidas , Humanos , Reprogramação Celular/genética , Vírus Sendai/genética , Vetores Genéticos/genética
20.
Cell Rep Methods ; 2(11): 100317, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36447645

RESUMO

Naive human induced pluripotent stem cells (iPSCs) can be generated by reprogramming somatic cells with Sendai virus (SeV) vectors. However, only dermal fibroblasts have been successfully reprogrammed this way, and the process requires culture on feeder cells. Moreover, SeV vectors are highly persistent and inhibit subsequent differentiation of iPSCs. Here, we report a modified SeV vector system to generate transgene-free naive human iPSCs with superior differentiation potential. The modified method can be applied not only to fibroblasts but also to other somatic cell types. SeV vectors disappear quickly at early passages, and this approach enables the generation of naive iPSCs in a feeder-free culture. The naive iPSCs generated by this method show better differentiation to trilineage and extra-embryonic trophectoderm than those derived by conventional methods. This method can expand the application of iPSCs to research on early human development and regenerative medicine.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Reprogramação Celular/genética , Vírus Sendai/genética , Vetores Genéticos , Diferenciação Celular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...